Skip to content

Деление и умножение в Assembler

Здравствуйте, уважаемые друзья! Продолжаем изучать нашу рубрику, на очереди тема умножения и деления в Assembler. Разберемся со всеми тонкостями этих операций, конечно же, на практическом примере.

Основные команды

  • Для умножения в Assembler используют команду mul
  • Для деления в Assembler используют команду div

Правила умножения в Assembler

Итак, как мы уже сказали, при умножении и делении в Assembler есть некоторые тонкости, о которых дальше и пойдет речь. Тонкости эти состоят в том, что от того, какой размерности регистр мы делим или умножаем многое зависит. Вот примеры:

  • Если аргументом команды mul является 1-байтовый регистр (например mul bl), то значение этого регистра bl умножится на значение регистра al, а результат запишется в регистр ax, и так будет всегда, независимо от того, какой 1-байтовый регистр мы возьмем.
    bl*al = ax

  • Если аргументом является регистр из 2 байт(напримерmul bx), то значение в регистре bx умножится на значение, хранящееся в регистре ax, а результат умножения запишется в регистр eax.
    bx*ax = eax

  • Если аргументом является регистр из 4 байт(напримерmul ebx), то значение в регистре ebx умножится на значение, хранящееся в регистре eax, а результат умножения запишется в 2 регистра: edx и eax.
    ebx*eax = edx:eax

Правила деления в Assembler

Почти аналогично реализуется и деление, вот примеры:

  • Если аргументом команды div является 1-байтовый регистр (например div bl), то значение регистра ax поделится на значение регистра bl, результат от деления запишется в регистр al, а остаток запишется в регистр ah.
    ax/bl = al, ah

  • Если аргументом является регистр из 2 байт(напримерdiv bx), то процессор поделит число, старшие биты которого хранит регистр dx, а младшие ax на значение, хранящееся в регистре bx. Результат от деления запишется в регистр ax, а остаток запишется в регистр dx.
    (dx,ax)/bx = ax, dx

  • Если же аргументом является регистр из 4 байт(напримерdiv ebx), то процессор аналогично предыдущему варианту поделит число, старшие биты которого хранит регистр edx, а младшие eax на значение, хранящееся в регистре ebx. Результат от деления запишется в регистр eax, а остаток запишется в регистр edx.
    (edx,eax)/ebx = eax, edx

Программа

Далее перейдем к примеру: он не должен вызвать у вас каких либо затруднений, если вы читали наши предыдущие статьи, особенно важна статья про вывод на экран, советую вам с ней ознакомиться. Ну а мы начнем:

.386
.model flat,stdcall
option casemap:none
include ..\INCLUDE\kernel32.inc 
include ..\INCLUDE\user32.inc 
includelib ..\LIB\kernel32.lib 
includelib ..\LIB\user32.lib 
BSIZE equ 15   

.data
ifmt db "%d", 0     ;строка формата
stdout dd ?         
cWritten dd ?
CRLF WORD ?

.data?
buf db BSIZE dup(?) ;буфер

Стандартное начало, в котором мы подключаем нужные нам библиотеки и объявляем переменные для вывода чисел на экран. Единственное о чем нужно сказать: новый для нас раздел .data? Знак вопроса говорит о том, что память будет выделяться на этапе компилирования и не будет выделяться в самом исполняемом файле с расширением .exe (представьте если бы буфер был большего размера) . Такое объявление — грамотное с точки зрения программирования.

.code
start:
invoke GetStdHandle, -11 
mov stdout,eax 
mov CRLF, 0d0ah

;-------------------------деление

mov eax, 99
mov edx, 0
mov ebx, 3
div ebx
invoke wsprintf, ADDR buf, ADDR ifmt, eax
invoke WriteConsoleA, stdout, ADDR buf, BSIZE, ADDR cWritten, 0
invoke WriteConsoleA, stdout, ADDR CRLF, 2, ADDR cWritten,0

В разделе кода, уже по традиции, считываем дескриптор экрана для вывода и задаем значения для перевода каретки. Затем помещаем в регистры соответствующие значения и выполняем деление регистра ebx, как оно реализуется описано чуть выше. Думаю, тут понятно, что мы просто делим число 99 на 3, что получилось в итоге выводим на экран консоли.

;-------------------------умножение
mov bx, 4
mov ax, 3
mul bx
invoke wsprintf, ADDR buf, ADDR ifmt, eax
invoke WriteConsoleA, stdout, ADDR buf, BSIZE, ADDR cWritten, 0
invoke ExitProcess,0  
end start

Думаю, что здесь тоже все понятно и без комментариев. Как производиться умножение в Assembler вы тоже можете прочитать чуть выше, ну и результат выводим на экран.

Просмотр консоли

Этот код я поместил в файл seventh.asm, сам файл поместил в папку BIN (она появляется при установке MASM32). Далее открыл консоль, как и всегда, с помощью команды cd перешел в эту папку и прописал amake.bat seventh. Скомпилировалось, затем запускаю исполняемый файл и в консоли получаются такие числа:
seven
Как видите, мы правильно посчитали эти операции.

На этом сегодня все! Надеюсь вы научились выполнять деление и умножение на Assembler.

Скачать исходники

Опубликовано вAssembler

3 комментария

  1. Петр Петр

    Отличная статья, спасибо!)

  2. mv mv

    al * rm8 = ax
    ax * rm16 = dx:ax <- ЭТО!!! т.к. в 286'ом 32 битных регистров небыло
    eax * rm32 = edx:eax

    • Nikiqq Nikiqq

      Пожалуй, вы правы. Но мы работаем с директивой .386, вы увидите это, если посмотрите пример.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *