Приветствую! Сегодня продолжаем говорить об обработке экспериментальных данных. Сегодняшняя статья — продолжение предыдущей темы: Интерполяция в Matlab. Настоятельно советую с ней ознакомиться перед чтением данной статьи. По сути аппроксимация в Matlab очень похожа на интерполяцию, однако, для её реализации используются другие правила и функции.
Аппроксимация
Относительно интерполяции, аппроксимация получила более широкое распространение. Сущность этого метода состоит в том, что табличные данные аппроксимируют кривой, которая не обязательно должна пройти через все узловые точки, а должна как бы сгладить все случайные помехи табличной функции.
МНК (Метод Наименьших Квадратов)
Одним из самых популярных методов аппроксимации в Matlab и в других средах, это Метод Наименьших Квадратов ( МНК ). В этом методе при сглаживании опытных данных аппроксимирующую кривую стремятся провести так, чтобы её отклонения от табличных данных по всем узловым точкам были минимальными.
Суть МНК заключается в следующем: для табличных данных, полученных в результате эксперимента, отыскать аналитическую зависимость, сумма квадратов уклонений которой от табличных данных во всех узловых точках была бы минимальной.
Аппроксимация в Matlab по МНК осуществляется с помощью функции polyfit. Функция p = polyfit(x, y, n) находит коэффициенты полинома p(x) степени n, который аппроксимирует функцию y(x) в смысле метода наименьших квадратов. Выходом является строка p длины n+1, содержащая коэффициенты аппроксимирующего полинома.
Примеры задач
Разберём задачу, в которой разрешается использование встроенных матлабовских функций.
Осуществить аппроксимацию в Matlab табличных данных x = [0, 0.1 , 0.2, 0.3, 0.5] и y = [3, 4.5, 1.7, 0.7, -1] . Применяя метод наименьших квадратов, приблизить ее многочленами 1-ой и 2-ой степени. Для каждого определить величину среднеквадратической ошибки. Построить (на одном листе) графики и заданной таблично функции (ломанная линия) и приближающих ее многочленов 1-ой и 2-ой степени.
x = [0, 0.1 , 0.2, 0.3, 0.5]; y = [3, 4.5, 1.7, 0.7, -1]; grid on plot(x, y, '*r'); xi = min(x):0.1:max(x); N = 1; % степень coeff1 = polyfit(x, y, N); y2 = 0; for k=0:N y2 = y2 + coeff1(N-k+1) * xi.^k; end hold on; plot(xi, y2, 'r'); N = 2; coeff2 = polyfit(x, y, N); y3 = 0; for k=0:N y3 = y3 + coeff2(N-k+1) * xi.^k; end hold on; plot(xi, y3, 'g'); std(y-(coeff1(1)*x+coeff1(2))) std(y-(coeff2(1)*x.^2+coeff2(2)*x+coeff2(3)))
Вывод:
ans = 0.9253
ans = 0.8973
Однако, встречаются задачи, где требуется реализовать аппроксимацию в Matlab без использования специальных функций.
Найти у(0.25) путём построения аппроксимирующего полинома методом наименьших квадратов согласно данным:
x: 0, 0.1, 0.2, 0.3, 0.5
y: 3, 4.5, 1.7, 0.7, -1
p: 0.5, 0.8, 1.6, 0.8, 0.1
Построить этот полином без учёта весовых коэффициентов с использованием определителя Вандермонда и стандартных операторов.
%Задаем массивы данных: x = [0; 0.1; 0.2; 0.3; 0.5]; y = [3;4.5;1.7;0.7;-1]; %Строим матрицу W – матрицу Вандермонда с вырезанным первым столбцом: W = vander(x); W = W(1:5,2:5); %Вычисляем элементы матрицы А как произведение транспонированной матрицы W и просто матрицы W A = W'*W; %Вычисляем элементы вектора b b = W'*y; %Решая систему уравнений Aa = b, находим значения вектор-столбца a: a = inv(A)*b %Это будут коэффициенты аппроксимирующего полинома. %Проверяем, используя методы MATLAB = функцию polyfit: qq = polyfit(x,y,3) %Получаем аппроксимированные значения y: x1 = [-0.2:0.001:0.7]; y1 = a(1)*x1.^3 + a(2)*x1.^2 + a(3)*x1 + a(4); %Строим график функции plot(x,y,'*'); hold on; grid on; plot(x1,y1,'Color','r'); %Находим значение в точке x = 0.25 x2 = 0.25; y2 = a(1)*x2^3 + a(2)*x2^2 + a(3)*x2 + a(4)
Вывод:
a =
228.1447
-176.0984
22.7745
3.1590
qq = 228.1447 -176.0984 22.7745 3.1590
y2 = 1.4113
Как видите встроенные функции для аппроксимации в Matlab укорачивают алгоритм почти вдвое.
Существует также возможность реализации всего алгоритма через одну функцию, но для преподавателей студентов она скорее всего будет не приемлема. С помощью функции lsqcurvefit(fun,x0,xdata,ydata), где:
xdata,ydata– табличные значения аппроксимируемой функции;
x0 –стартовое значение параметров функции;
fun – функция аппроксимации, задаваемая пользователем
С аналитически-теоретической стороны, существуют такие виды аппроксимации:
- Аппроксимация ортогональными классическими полиномами.
- Аппроксимация каноническим полиномом
Но на практике их реализацию требуют редко.
Вот и вся основная информация по аппроксимации в Matlab, если остались вопросы, задавайте их в комментариях.
Скачать исходник первой задачи
Скачать исходник второй задачи
Приветствую) необходимо реализовать взвешанный метод наименьших квадратов) есть варианты?
Здравствуй) чтобы реализовать взвешенный МНК,
1) необходимо задать или рассчитать веса
2) написать свой алгоритм для расчета квадратичного отклонения с учетом веса
3) стандартной функции в матлаб нет, поэтому вам нужно найти алгоритм МНК и переписать его
У нас, к сожалению, готового кода нет.
Пример не рабочий. На этом этапе «%Вычисляем элементы вектора b
b = W’*y;» выдает ошибку:
Error using *
Inner matrix dimensions must agree.
Алексей, только что запустил — все работает. Проверяйте, у вас ругается на размерность матрицы, может где то раньше переопределили размерность.
в методе без стандартных функций можно аппроксимировать только полиномом, у которого степень на один меньше количества точек? Т.е. я не смогу аппроксимировать полиномом 6 степени, если у меня 10 точек?
Наталья, сможете аппроксимировать полиномом 6 степени набор из 10 точек.
А функцию, которой я аппроксимирую, можно задавать любую?
У меня набор значений Х и соответствующий набор значений У.
Мне надо аппроксимировать эту зависимость суммой трех однотипных функций с разными параметрами. Каждая функция определяется тремя параметрами.
Соответственно, программа должна вычислить 9 параметров.
Такое вообще в этой программе возможно?